Precision
Probability that the sample is positive, given being classified as positive.
Also known as PPV (
Positive Predictive Value).
$$\mathrm{PREC} = \frac{\mathrm{TP}}{\mathrm{TP} + \mathrm{FP}} = P(+ | C+)$$
See:
Precision and recall on Wikipedia.
Recall
Probability that the test classifies sample as positive, given sample being positive.
Also known as
Sensitivity or TPR (
True Positive Rate).
$$\mathrm{REC} = \frac{\mathrm{TP}}{\mathrm{TP} + \mathrm{FN}} = P(C+ | +)$$
See:
Precision and recall on Wikipedia.
Specificity
Probability that test classifies sample as negative, given sample being negative. Also known as TNR (
True Negative Rate).
$$\mathrm{SPEC} = \frac{\mathrm{TN}}{\mathrm{TN} + \mathrm{FP}} = P(C- | -)$$
See:
Specificity and sensitivity on Wikipedia.
Accuracy
$$\mathrm{ACC} = \frac{\mathrm{TP} + \mathrm {TN}}{\mathrm{TP} + \mathrm{TN} + \mathrm{FP} + \mathrm{FN}}$$
See:
Accuracy and precision on Wikipedia.
F1
F
1 is a harmonic mean of
Precision and
Recall, which gives:
$$\mathrm{F_1} = \frac{\mathrm{TP}}{\mathrm{TP} + \frac{1}{2} \left( \mathrm{FP} + \mathrm{FN} \right)}$$
See:
F1 score on Wikipedia.
P4
P
4 is a harmonic mean of
Precision,
Recall,
Specificity and
NPV which gives:
$$\mathrm{P}_4 = \frac{4\cdot\mathrm{TP}\cdot\mathrm{TN}}{4\cdot\mathrm{TP}\cdot\mathrm{TN} + (\mathrm{TP} + \mathrm{TN}) \cdot (\mathrm{FP} + \mathrm{FN})}$$
See:
P4 metric on Wikipedia.
Youden Index
$$\mathrm{J} = \mathrm{REC} + \mathrm{SPEC} - 1 = \frac{\mathrm{TP}}{\mathrm{TP} + \mathrm{FN}} + \frac{\mathrm{TN}}{\mathrm{TN} + \mathrm{FP}} - 1$$
See:
Youden's statistic on Wikipedia.
Markedness
$$\mathrm{MK} = \mathrm{PREC} + \mathrm{NPV} - 1$$
See:
Powers (2020) article.
MCC
MCC - Matthews correlation coefficient, also known as
Phi coefficient.
$$\mathrm{MCC} = \frac{\mathrm{TP} \times \mathrm{TN} - \mathrm{FP} \times \mathrm{FN}}{\sqrt{(\mathrm{TP} + \mathrm{FP}) (\mathrm{TP} + \mathrm{FN}) (\mathrm{TN} + \mathrm{FP}) (\mathrm{TN} + \mathrm{FN})}}$$
See:
Phi coefficient on Wikipedia.